Inhaltsverzeichnis
Funktionsprinzip Stauaufladung
Bei nicht aufgeladenen Kolbenmotoren (Saugmotoren) wird beim Ansaugen von Luft durch die Kolben ein Unterdruck im Ansaugtrakt erzeugt. Der Unterdruck steigt mit wachsender Drehzahl an und begrenzt die erreichbare Leistung des Motors. Eine der Möglichkeiten, dem entgegenzuwirken, ist die Aufladung der Zylinder mittels eines Turboladers.
Ein Turbolader besteht aus einer Abgasturbine im Abgasstrom, die über eine Welle mit einem Verdichter im Ansaugtrakt verbunden ist. Die Turbine wird durch den Abgasstrom des Motors in Rotation versetzt und treibt so den Verdichter an. Der Verdichter erhöht den Druck im Ansaugtrakt des Motors so, dass während des Ansaugtaktes eine größere Menge Luft in den Zylinder gelangt, als bei einem Saugmotor. Damit steht mehr Sauerstoff für die Verbrennung einer entsprechend größeren Kraftstoffmenge zur Verfügung. Die führt zu einer Steigerung des Motor-Mitteldrucks und des Drehmoments, was die Leistungsabgabe erhöht. Wegen der größeren Gasmenge ist bei Otto-Turbomotoren meist eine Verringerung des Verdichtungsverhältnisses gegenüber vergleichbaren Saugmotoren nötig, da es sonst durch zu hohe Drücke und
Die Energie für die Aufladung wird durch die Abgasturbine den schnell strömenden, heißen Abgasen entnommen. Diese Energie, die sonst durch den Auspuff verloren ginge, wird somit zur Verringerung der Ansaugverluste benutzt. Durch die Aufladung steigt grundsätzlich der Gesamtwirkungsgrad einer Maschinenanlage. Im Extremfall wird durch die komprimierte Ladeluft bereits während des Ansaugtaktes Leistung von der Maschine (4-Takt) abgegeben.
Durch Turbolader können Motoren mit gleicher Baugröße gegenüber unaufgeladenen Motoren größere Leistungen erzielen, ohne dass grundsätzlich andere Maschinenparameter geändert werden müssen. Meist erfordert der gegenüber der nicht aufgeladenen Version deutlich höhere Spitzendruck im Verbrennungsraum sowie das entsprechend höhere Motor-Drehmoment jedoch stärkere Dimensionierungen z. B. von Lagern (Kurbelwelle) und/oder Wandstärken (Kolbenboden).
Die Zuführung einer größeren Menge von Verbrennungsluft, verbunden mit dem Verdichtungsprozess, nennt man Aufladen. Im Gegensatz zum Saugmotor, in welchem sich die Luft während des Ansaugens durch den Unterdruck adiabatisch abkühlt, kommt es bei aufgeladenen Motoren durch die Komprimierung zu einer deutlichen Erwärmung der Ladeluft. Je nach Grad der Aufladung kann bei Serienmotoren die komprimierte Luft dadurch bis über 200 °C erwärmt werden. Neben der zusätzlichen Temperaturbelastung des Motors, verringert sich dadurch auch die erreichbare Leistung, da sich der Füllungsgrad des Motors verschlechtert. Der Grund dafür ist die geringere Dichte der heißen Luft, wodurch dem Motor eine geringere Sauerstoffmenge zugeführt wird. Um das zu vermeiden, wird die Ladeluft bei praktisch allen modernen aufgeladenen Motoren durch Ladeluftkühler gekühlt. Da der Ladeluftkühler dem Strom der Ladeluft einen gewissen Widerstand entgegensetzt und so den Ladedruck etwas vermindert, sollte die Temperaturdifferenz der Ladeluftkühlung größer als ca. 50 K sein, um eine wirksame Leistungssteigerung gegenüber einem Motor ohne Ladeluftkühlung zu erzielen. Um die thermische Belastung bei Volllast zu verringern, kann zusätzlich Kraftstoff eingespritzt werden. Bei Motoren, bei denen eine möglichst hohe Leistungsabgabe Vorrang vor der Lebensdauer hat, kann die Ladeluft auch durch eine zusätzliche Wassereinspritzung oder Einspritzung eines Wasser-Alkohol-Gemisches direkt in den Ansaugtrakt gekühlt werden, was eine weitere Steigerung der Leistung ermöglicht.
Aufbau
Ein Turbolader besteht aus einer Turbine und einem Verdichter, die sehr ähnlich aufgebaut sind. Aus dem Wort Turbine wurde der Name Turbo abgeleitet. Die Turbine wird durch den Abgasstrom angetrieben und treibt den Verdichter an, der seinerseits die angesaugte Luft verdichtet und in den Motor leitet. Im Inneren der beiden Gehäuse dreht sich jeweils ein Flügelrad bzw. Schaufelrad, das die Strömungsenergie in eine Drehbewegung umsetzt bzw. beim Lader umgekehrt die Drehbewegung in Strömungsarbeit. Ein Turbolader kann Drehzahlen bis zu 290.000 Umdrehungen pro Minute erreichen (z. B. smart Dreizylinder-Turbodiesel). Diese enorm hohen Drehzahlen können nur erreicht werden, weil die Turboladerwelle in einem hydrodynamischen Gleitlager gelagert ist. Einige Turbolader besitzen neben den Ölversorgungsanschlüssen auch Anschlüsse an den Wasserkreislauf für Kühlzwecke. Durch die Entwicklung von keramischen Kugellagern werden die Turbolader robuster und haltbarer. Dabei gibt es ein oder zwei Keramiklager zusätzlich zur Gleitlagerung. Kugelgelagerte Turbolader haben eine geringere Gleitreibfläche, was sie schneller ansprechen lässt. Dadurch erfolgen ein schnellerer Drehzahlanstieg des Laders und ein früher einsetzender Ladedruck.
Besonderheiten der Stoßaufladung
Auch die Entwicklung der Stoßaufladung geht auf A. Büchi zurück. Bei Mehrzylindermaschinen mit Stoßaufladung werden die Abgase durch mehrere Rohrleitungen geführt und treten durch eine Düsengruppe in die Turbine ein. Die Abgasleitungen müssen dabei so zusammengeführt werden, dass die Ausstoßtakte der an der jeweiligen Leitung angeschlossenen Zylinder nicht gleichzeitig erfolgen. Bei der Stoßaufladung sinkt der Druck am Auslassventil nach anfänglichem starken Anstieg durch die Massenträgheit der ausgestoßenen Gasmasse unter den Spüldruck ab, was den Gaswechsel begünstigt. Die beschleunigte Gasmasse trifft auf die Turbine und treibt sie an. Im Vergleich zur Stauaufladung wirken die Abgase mit wesentlich stärker schwankendem Druck auf die Turbine.
Vorteile der Turboaufladung
Die Abgasturboaufladung ermöglicht die Steigerung von maximalem Drehmoment und maximaler Leistung (bei konstantem Arbeitsvolumen) bzw. des Mitteldrucks, ohne vom Motor mechanische Antriebsleistung abzufordern, wie dies bei mechanischer Aufladung z. B. durch einen Kompressor geschieht. Diese Steigerung erlaubt entweder den Einsatz eines leistungsstärkeren Motors mit annähernd gleichen Abmessungen wie beim Ursprungsaggregat, oder ermöglicht ein so genanntes Downsizing des Motors, also das Erzielen einer vergleichbaren Leistung aus einer kleineren und ggf. leichteren Maschine.